Colorectal Cancer: Screening --Adults aged 76 to 85 years


General

Grade: C

Specific Recommendations

The decision to screen for colorectal cancer in adults aged 76 to 85 years should be an individual one, taking into account the patient’s overall health and prior screening history. Adults in this age group who have never been screened for colorectal cancer are more likely to benefit. Screening would be most appropriate among adults who 1) are healthy enough to undergo treatment if colorectal cancer is detected and 2) do not have comorbid conditions that would significantly limit their life expectancy

Frequency of Service

Evidence from RCTs demonstrates that annual or biennial screening with gFOBT as well as 1-time and every 3- to 5-year flexible sigmoidoscopy reduces colorectal cancer deaths.1 The CISNET models found that several screening strategies were estimated to yield comparable life-years gained (ie, life-years gained with the noncolonoscopy strategies were within 90% of those gained with the colonoscopy strategy) among adults aged 50 to 75 years and an efficient balance of benefits and harms (see the full CISNET report for more details212). These screening strategies include 1) annual screening with FIT, 2) screening every 10 years with flexible sigmoidoscopy and annual screening with FIT, 3) screening every 10 years with colonoscopy, and 4) screening every 5 years with CT colonography. The findings for CT colonography depend on the proxy measure used for the burden of screening (number of lifetime colonoscopies or lifetime cathartic bowel preparations). Two of the 3 CISNET models found that FIT-DNA screening every 3 years (as recommended by the manufacturer) was estimated to yield life-years gained less than 90% of the colonoscopy screening strategy (84% and 87%, respectively). Another way to conceptualize these findings is to note that CISNET modeling found that FIT-DNA screening every 3 years was estimated to provide about the same amount of benefit as screening with flexible sigmoidoscopy alone every 5 years (Figure).2The Table lists the various screening tests for colorectal cancer and notes potential frequency of use as well as additional considerations for each method. The Figure presents the estimated number of life-years gained, colorectal cancer deaths averted, lifetime colonoscopies required, and resulting complications per 1,000 screened adults aged 50 to 75 years for each of the screening strategies. These estimates are derived from modeling conducted by the Cancer Intervention and Surveillance Modeling Network (CISNET) to inform this recommendation.212

Risk Factor Information

For the vast majority of adults, the most important risk factor for colorectal cancer is older age. Most cases of colorectal cancer occur among adults older than 50 years; the median age at diagnosis is 68 years.3A positive family history (excluding known inherited familial syndromes) is thought to be linked to about 20% of cases of colorectal cancer.1 About 3% to 10% of the population has a first-degree relative with colorectal cancer.7 The USPSTF did not specifically review the evidence on screening in populations at increased risk; however, other professional organizations recommend that patients with a family history of colorectal cancer (a first-degree relative with early-onset colorectal cancer or multiple first-degree relatives with the disease) be screened more frequently starting at a younger age, and with colonoscopy.8Male sex and black race are also associated with higher colorectal cancer incidence and mortality. Black adults have the highest incidence and mortality rates compared with other racial/ethnic subgroups.3 The reasons for these disparities are not entirely clear. Studies have documented inequalities in screening, diagnostic follow-up, and treatment; they also suggest that equal treatment generally seems to produce equal outcomes.9-11 Accordingly, this recommendation applies to all racial/ethnic groups, with the clear acknowledgement that efforts are needed to ensure that at-risk populations receive recommended screening, follow-up, and treatment.


Clinical

Patient Population Under Consideration

This recommendation applies to asymptomatic adults 50 years and older who are at average risk of colorectal cancer and who do not have a family history of known genetic disorders that predispose them to a high lifetime risk of colorectal cancer (such as Lynch syndrome or familial adenomatous polyposis), a personal history of inflammatory bowel disease, a previous adenomatous polyp, or previous colorectal cancer.

When screening results in the diagnosis of colorectal adenomas or cancer, patients are followed up with a surveillance regimen, and recommendations for screening no longer apply. The USPSTF did not review or consider the evidence on the effectiveness of any particular surveillance regimen after diagnosis and removal of adenomatous polyps or colorectal cancer.

Assessment of Risk

For the vast majority of adults, the most important risk factor for colorectal cancer is older age. Most cases of colorectal cancer occur among adults older than 50 years; the median age at diagnosis is 68 years.3

A positive family history (excluding known inherited familial syndromes) is thought to be linked to about 20% of cases of colorectal cancer.1 About 3% to 10% of the population has a first-degree relative with colorectal cancer.7 The USPSTF did not specifically review the evidence on screening in populations at increased risk; however, other professional organizations recommend that patients with a family history of colorectal cancer (a first-degree relative with early-onset colorectal cancer or multiple first-degree relatives with the disease) be screened more frequently starting at a younger age, and with colonoscopy.8

Male sex and black race are also associated with higher colorectal cancer incidence and mortality. Black adults have the highest incidence and mortality rates compared with other racial/ethnic subgroups.3 The reasons for these disparities are not entirely clear. Studies have documented inequalities in screening, diagnostic follow-up, and treatment; they also suggest that equal treatment generally seems to produce equal outcomes.9-11 Accordingly, this recommendation applies to all racial/ethnic groups, with the clear acknowledgement that efforts are needed to ensure that at-risk populations receive recommended screening, follow-up, and treatment.

Screening Tests

The Table lists the various screening tests for colorectal cancer and notes potential frequency of use as well as additional considerations for each method. The Figure presents the estimated number of life-years gained, colorectal cancer deaths averted, lifetime colonoscopies required, and resulting complications per 1,000 screened adults aged 50 to 75 years for each of the screening strategies. These estimates are derived from modeling conducted by the Cancer Intervention and Surveillance Modeling Network (CISNET) to inform this recommendation.212

Stool-Based Tests

Multiple randomized clinical trials (RCTs) have shown that screening with the guaiac-based fecal occult blood test (gFOBT) reduces colorectal cancer deaths.1 Fecal immunochemical tests (FITs), which identify intact human hemoglobin in stool, have improved sensitivity compared with gFOBT for detecting colorectal cancer.1 Among the FITs that are cleared by the US Food and Drug Administration (FDA) and available for use in the United States, the OC FIT-CHEK family of FITs (Polymedco)—which include the OC-Light and the OC-Auto—have the best test performance characteristics (ie, highest sensitivity and specificity).1 Multitargeted stool DNA testing (FIT-DNA) is an emerging screening strategy that combines a FIT with testing for altered DNA biomarkers in cells shed into the stool. Multitargeted stool DNA testing has increased single-test sensitivity for detecting colorectal cancer compared with FIT alone.13 The harms of stool-based testing primarily result from adverse events associated with follow-up colonoscopy of positive findings.1 The specificity of FIT-DNA is lower than that of FIT alone,13 which means it has a higher number of false-positive results and higher likelihood of follow-up colonoscopy and experiencing an associated adverse event per screening test. There are no empirical data on the appropriate longitudinal follow-up for an abnormal FIT-DNA test result followed by a negative colonoscopy; there is potential for overly intensive surveillance due to clinician and patient concerns about the implications of the genetic component of the test.

Direct Visualization Tests

Several RCTs have shown that flexible sigmoidoscopy alone reduces deaths from colorectal cancer.1 Flexible sigmoidoscopy combined with FIT has been studied in a single trial and was found to reduce the colorectal cancer–specific mortality rate more than flexible sigmoidoscopy alone.14 Modeling studies conducted by CISNET also consistently estimate that combined testing yields more life-years gained and colorectal cancer deaths averted compared with flexible sigmoidoscopy alone.2 Flexible sigmoidoscopy can result in direct harms, such as colonic perforations and bleeding, although the associated event rates are much lower than those observed with colonoscopy.1 Harms can also occur as a result of follow-up colonoscopy.

Completed trials of flexible sigmoidoscopy provide indirect evidence that colonoscopy—a similar endoscopic screening method—reduces colorectal cancer mortality. A prospective cohort study also found an association between patients who self-reported being screened with colonoscopy and a lower colorectal cancer mortality rate.15 Colonoscopy has both indirect and direct harms. Harms may be caused by bowel preparation prior to the procedure (eg, dehydration and electrolyte imbalances), the sedation used during the procedure (eg, cardiovascular events), or the procedure itself (eg, infection, colonic perforations, or bleeding).

Evidence for assessing the effectiveness of computed tomography (CT) colonography is limited to studies of its test characteristics.1Computed tomography colonography can result in unnecessary diagnostic testing or treatment of incidental extracolonic findings that are of no importance or would never have threatened the patient’s health or become apparent without screening (ie, overdiagnosis and overtreatment).1 Extracolonic findings are common, occurring in about 40% to 70% of screening examinations. Between 5% and 37% of these findings result in diagnostic follow-up, and about 3% require definitive treatment.1 As with other screening strategies, indirect harms from CT colonography can also occur from follow-up colonoscopy for positive findings.

Serology Tests

The FDA approved a blood test to detect circulating methylated SEPT9 DNA (Epi proColon; Epigenomics) in April 2016.16 A single test characteristic study met the inclusion criteria for the systematic evidence review supporting this recommendation statement; it found the SEPT9 DNA test to have low sensitivity (48%) for detecting colorectal cancer.17

Starting and Stopping Ages

Available RCTs of gFOBT and flexible sigmoidoscopy included patients with age ranges of 45 to 80 years and 50 to 74 years, respectively. For gFOBT, the majority of participants entered the trials at age 50 or 60 years; for flexible sigmoidoscopy, the mean age of participants was 56 to 60 years.1

Microsimulation analyses performed by CISNET suggest that starting colorectal cancer screening at age 45 years rather than 50 years is estimated to yield a modest increase in life-years gained and a more efficient balance between life-years gained and lifetime number of colonoscopies (a proxy measure for the burden of screening).2 However, across the different screening methods, lowering the age at which to begin screening to 45 years while maintaining the same screening interval resulted in an estimated increase in the lifetime number of colonoscopies. In the case of screening colonoscopy, 2 of the 3 models found that by starting screening at age 45 years, the screening interval could be extended from 10 to 15 years. Doing so maintained the same (or slightly more) life-years gained as performing colonoscopy every 10 years starting at age 50 years without increasing the lifetime number of colonoscopies. However, 1 model estimated a slight loss in life-years gained with a longer screening interval and an earlier age at which to begin screening.2

The USPSTF considered these findings and concluded that the evidence best supports a starting age of 50 years for the general population, noting the modest increase in life-years gained by starting screening earlier, the discordant findings across models for extending the screening interval when the age at which to begin screening is lowered, and the lack of empirical evidence in younger populations.

The age at which the balance of benefits and harms of colorectal cancer screening becomes less favorable varies based on a patient’s life expectancy, health status, comorbid conditions, and prior screening status.18 Empirical data from randomized trials on outcomes of screening after age 74 years are scarce. All 3 CISNET models consistently estimate that few additional life-years are gained when screening is extended past age 75 years among average-risk adults who have previously received adequate screening.2

The USPSTF does not recommend routine screening for colorectal cancer in adults 86 years and older. In this age group, competing causes of mortality preclude a mortality benefit that would outweigh the harms.

Screening Intervals

Evidence from RCTs demonstrates that annual or biennial screening with gFOBT as well as 1-time and every 3- to 5-year flexible sigmoidoscopy reduces colorectal cancer deaths.1 The CISNET models found that several screening strategies were estimated to yield comparable life-years gained (ie, life-years gained with the noncolonoscopy strategies were within 90% of those gained with the colonoscopy strategy) among adults aged 50 to 75 years and an efficient balance of benefits and harms (see the full CISNET report for more details212). These screening strategies include 1) annual screening with FIT, 2) screening every 10 years with flexible sigmoidoscopy and annual screening with FIT, 3) screening every 10 years with colonoscopy, and 4) screening every 5 years with CT colonography. The findings for CT colonography depend on the proxy measure used for the burden of screening (number of lifetime colonoscopies or lifetime cathartic bowel preparations). Two of the 3 CISNET models found that FIT-DNA screening every 3 years (as recommended by the manufacturer) was estimated to yield life-years gained less than 90% of the colonoscopy screening strategy (84% and 87%, respectively). Another way to conceptualize these findings is to note that CISNET modeling found that FIT-DNA screening every 3 years was estimated to provide about the same amount of benefit as screening with flexible sigmoidoscopy alone every 5 years (Figure).2

Treatment

Treatment of early-stage colorectal cancer generally consists of local excision or simple polypectomy for tumors limited to the colonic mucosa or surgical resection (via laparoscopy or open approach) with anastomosis for larger, localized lesions.

Other Approaches to Prevention

The USPSTF has made a recommendation on aspirin use for the primary prevention of cardiovascular disease and colorectal cancer in average-risk adults (www.uspreventiveservicestaskforce.org).


Rationale

Importance

Colorectal cancer is the second-leading cause of cancer death in the United States. In 2016, an estimated 134,000 persons will be diagnosed with the disease, and about 49,000 will die from it. Colorectal cancer is most frequently diagnosed among adults aged 65 to 74 years; the median age at death from colorectal cancer is 68 years.3

Detection

The USPSTF found convincing evidence that screening for colorectal cancer with several different methods can accurately detect early-stage colorectal cancer and adenomatous polyps.

Although single test performance is an important issue in the detection of colorectal cancer, the sensitivity of the test over time is more important in an ongoing screening program. However, data that permit assessment and direct comparison of screening methods to detect colorectal neoplasia in screening programs over time are limited to those from analytic modeling.

Benefits of Screening and Early Intervention

The USPSTF found convincing evidence that screening for colorectal cancer in adults aged 50 to 75 years reduces colorectal cancer mortality. The USPSTF found no head-to-head studies demonstrating that any of the screening strategies it considered are more effective than others, although the tests have varying levels of evidence supporting their effectiveness, as well as different strengths and limitations (Table). About one-third of eligible adults in the United States have never been screened for colorectal cancer,4 and offering choice in colorectal cancer screening strategies may increase screening uptake.5 As such, the screening tests are not presented in any preferred or ranked order; rather, the goal is to maximize the total number of persons who are screened because that will have the largest effect on reducing colorectal cancer deaths.

The benefit of early detection of and intervention for colorectal cancer declines after age 75 years. Among older adults who have been previously screened for colorectal cancer, there is at best a moderate benefit to continuing screening during the ages of 76 to 85 years. However, adults in this age group who have never been screened for colorectal cancer are more likely to benefit than those who have been previously screened.

The time between detection and treatment of colorectal cancer and realization of a subsequent mortality benefit can be substantial. As such, the benefit of early detection of and intervention for colorectal cancer in adults 86 years and older is at most small.

To date, no method of screening for colorectal cancer has been shown to reduce all-cause mortality in any age group.16

Harms of Screening and Early Intervention

The harms of screening for colorectal cancer in adults aged 50 to 75 years are small. The majority of harms result from the use of colonoscopy, either as the screening test or as follow-up for positive findings detected by other screening tests. The rate of serious adverse events from colorectal cancer screening increases with age.1 Thus, the harms of screening for colorectal cancer in adults 76 years and older are small to moderate.

USPSTF Assessment

The USPSTF concludes with high certainty that the net benefit (ie, the benefit minus the harms) of screening for colorectal cancer in adults aged 50 to 75 years is substantial.

The USPSTF concludes with moderate certainty that the net benefit of screening for colorectal cancer in adults aged 76 to 85 years who have been previously screened is small. Adults who have never been screened for colorectal cancer are more likely to benefit.


Others

Other Considerations Implementation Colorectal cancer causes substantial morbidity and mortality, and the evidence is convincing that screening for colorectal cancer reduces that burden. Despite the availability of several effective screening options, nearly one-third of eligible adults have never been screened.19 Different screening methods may be more or less attractive for patients based on their features. For example, colonoscopy requires a relatively greater time commitment over a short period (bowel preparation, procedure, and recovery) but allows for much longer time between screenings compared with stool-based screening. Stool-based screening requires persons to handle their feces, which may be difficult for some, but the test is quick and noninvasive and can be done at home (the sample is mailed to the laboratory for testing). Flexible sigmoidoscopy combined with annual FIT may be an attractive option for persons who want reassurance from endoscopic screening but want to limit their exposure to colonoscopy. Given the lack of evidence from head-to-head comparative trials that any of the screening strategies have a greater net benefit than the others, clinicians should consider engaging patients in informed decision making about the screening strategy that would most likely result in completion, with high adherence over time, taking into consideration both the patient’s preferences and local availability.For colorectal cancer screening programs to be successful in reducing mortality, they need to involve more than just the screening method in isolation. Screening is a cascade of activities that must occur in concert, cohesively, and in an organized way for benefits to be realized, from the point of the initial screening examination (including related interventions or services that are required for successful administration of the screening test, such as bowel preparation or sedation with endoscopy) to the timely receipt of any necessary diagnostic follow-up and treatment.Multiple effective implementation strategies have been demonstrated to increase appropriate provision and use of colorectal cancer screening. Specifically, the Community Preventive Services Task Force recommends using clinician and patient reminder systems, using small media (such as videos, letters, and brochures), reducing structural barriers to screening (such as the time or distance to the screening delivery setting or offering extended or nonstandard clinic hours), and providing clinician assessment and feedback about screening rates (more information is available at www.thecommunityguide.org/cancerThis link goes offsite. Click to read the external link disclaimer).Lastly, clinicians also need to consider how they will engage patients older than 75 years about when to stop screening. Research Needs and Gaps Higher-quality data are needed about the natural history of small (<10 mm) adenomas to improve understanding of optimal screening and surveillance strategies and to guide when clinical intervention is necessary. Further, because determining the ultimate worth of a screening method requires an accurate assessment of the net benefit of that intervention, randomized trials are needed to directly compare different types of colorectal cancer screening programs to more clearly define their relative benefits and harms; however, the USPSTF appreciates the challenges inherent in performing such trials, given the large sample sizes and long time horizons required.A recent analysis of data from the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) Program suggests that the incidence of colorectal cancer may be increasing among adults younger than 50 years.20 Modeling suggests there may be some potential advantages to starting colonoscopy screening at an earlier age (45 years) and to extending the interval between screenings with negative findings.Black and Alaska Native individuals have a higher incidence of and mortality rate from colorectal cancer compared with the general population. Empirical data about the effectiveness of different screening strategies for these at-risk populations are not available.Although there is a growing body of evidence on the test performance characteristics of CT colonography, evidence to bound the potential harms of this technology is still lacking, particularly in regard to incidental findings. More consistent and complete reporting, in studies with longer-term follow-up, of the downstream consequences of initial detection, subsequent workup, and definitive treatment of extracolonic findings (ie, CT Colonography Reporting and Data System findings categorized as E3—“likely unimportant finding, incompletely characterized: subject to local practice and patient preference, workup may be indicated” and E4—“potentially important finding: communicate to referring physician as per accepted practice guidelines”) would allow for better understanding of the net benefit associated with this screening approach.Empirical evidence is lacking on the appropriate follow-up of abnormal results from FIT-DNA screening when the initial diagnostic colonoscopy is negative. There is a theoretical concern that FIT-DNA may generate inappropriate use of surveillance colonoscopy if clinicians and patients place increased importance on the genetic component of the test. At present, evidence is lacking to establish the optimal frequency of screening with the FIT-DNA test. As a condition of its approval of the test, the FDA required the manufacturer to conduct a longitudinal study examining the test characteristics of a 3-year screening interval; these data should help inform decisions.21Studies on patient adherence to the various screening options, within single-method screening programs over time, as well as factors that may influence adherence across different screening methods, are needed to help better inform and improve uptake of screening across eligible populations. Update to Previous USPSTF Recommendations This is an update of the 2008 USPSTF recommendation.27 In 2008, the USPSTF recommended screening with colonoscopy every 10 years, annual FIT, annual high-sensitivity FOBT, or flexible sigmoidoscopy every 5 years combined with high-sensitivity FOBT every 3 years. In the current recommendation, instead of emphasizing specific screening approaches, the USPSTF has instead chosen to highlight that there is convincing evidence that colorectal cancer screening substantially reduces deaths from the disease among adults aged 50 to 75 years and that not enough adults in the United States are using this effective preventive intervention. The reasons for this gap between evidence and practice are multifaceted and will require sustained effort among clinicians, policy makers, advocates, and patients to overcome. Recommendatoins of Others Many organizations have issued guidelines concerning screening for colorectal cancer. All of the following recommendations apply to average-risk adults 50 years and older.In 2008, the American Cancer Society, American College of Radiology, and the US Multi-Society Task Force (including the American Gastroenterological Association, American College of Gastroenterology, and American Society for Gastrointestinal Endoscopy) jointly issued recommendations. They prioritized flexible sigmoidoscopy every 5 years, colonoscopy every 10 years, double-contrast barium enema every 5 years, and CT colonography every 5 years as preferred tests “designed to both prevent and detect cancer” if resources are available but also recommended annual high-sensitivity gFOBT or FIT-DNA testing (interval uncertain).8 Shortly thereafter, the American College of Gastroenterology released an independent guideline recommending colonoscopy every 10 years as the single preferred screening strategy. It stated that if colonoscopy is not available or is unacceptable to a patient, recommended alternative strategies include flexible sigmoidoscopy every 5 to 10 years or CT colonography every 5 years (preferred) or annual FIT, annual Hemoccult II SENSA, or FIT-DNA testing every 3 years (acceptable).28In 2012, the National Comprehensive Cancer Network recommended colonoscopy every 10 years as the preferred screening strategy if available; otherwise, it recommended annual gFOBT or FIT, with or without flexible sigmoidoscopy, every 5 years or flexible sigmoidoscopy alone every 5 years as secondary approaches to screening.29In 2015, the American College of Physicians recommended that average-risk adults aged 50 to 75 years should be screened for colorectal cancer by 1 of 4 strategies: 1) annual high-sensitivity gFOBT or FIT, 2) flexible sigmoidoscopy every 5 years, 3) high-sensitivity gFOBT or FIT every 3 years plus flexible sigmoidoscopy every 5 years, or 4) colonoscopy every 10 years. It advised that average-risk adults younger than 50 years, older than 75 years, or with an estimated life expectancy of less than 10 years should not be screened.30 The American Academy of Family Physicians is in the process of updating its guidelines.31In 2016, the Canadian Task Force on Preventive Health Care recommended that adults aged 50 to 59 years (weak recommendation) and 60 to 74 years (strong recommendation) be screened for colorectal cancer with gFOBT or FIT every 2 years or flexible sigmoidoscopy every 10 years. It recommended against screening in adults 75 years and older (weak recommendation) and using colonoscopy as a primary screening test (weak recommendation).32


Tools

To get started, log in or create your free account Create Account